Notes on Fast Fourier Transform Algorithms & Data Structures
نویسنده
چکیده
In this set of lecture notes we focus on the point-value representation obtained by looking at a particular set of points, the nth roots of unity. In the field of complex numbers C, there are exactly n different solutions to the equation x = 1. We call these solutions the n-th roots of unity. One of these roots of unity is ωn = cos(2π/n)+ i sin(2π/n), and this is called the principal nth root of unity. It is not too difficult to show that ωn generates the entire set of nth roots of unity as follows, for any n: 1,ωn,ω 2 n,ω 3 n, . . . ,ω n−1 n .
منابع مشابه
Notes on Fast Fourier Transform Algorithms & Data Structures 2004 ( updated 2007 )
In this set of lecture notes we focus on the point-value representation obtained by looking at a particular set of points, the nth roots of unity. In the field of complex numbers C, there are exactly n different solutions to the equation x = 1. We call these solutions the n-th roots of unity. One of these roots of unity is ωn = cos(2π/n)+ i sin(2π/n), and this is called the principal nth root o...
متن کاملFast Multipole Method based filtering of non-uniformly sampled data
Non-uniform fast Fourier Transform (NUFFT) and inverse NUFFT (INUFFT) algorithms, based on the Fast Multipole Method (FMM) are developed and tested. Our algorithms are based on a novel factorization of the FFT kernel, and are implemented with attention to data structures and error analysis.
متن کاملRecent Developments in the Sparse Fourier Transform
The Discrete Fourier Transform (DFT) is a fundamental component of numerous computational techniques in signal processing and scientific computing. The most popular means of computing the DFT is the Fast Fourier Transform (FFT). However, with the emergence of big data problems, in which the size of the processed data sets can easily exceed terabytes, the “Fast” in Fast Fourier Transform is ofte...
متن کاملCoherent optical implementations of the fast Fourier transform and their comparison to the optical implementation of the quantum Fourier transform
Optical structures to implement the discrete Fourier transform (DFT) and fast Fourier transform (FFT) algorithms for discretely sampled data sets are considered. In particular, the decomposition of the FFT algorithm into the basic Butterfly operations is described, as this allows the algorithm to be fully implemented by the successive coherent addition and subtraction of two wavefronts (the sub...
متن کاملThe sparse fourier transform : theory & practice
The Fourier transform is one of the most fundamental tools for computing the frequency representation of signals. It plays a central role in signal processing, communications, audio and video compression, medical imaging, genomics, astronomy, as well as many other areas. Because of its widespread use, fast algorithms for computing the Fourier transform can benefit a large number of applications...
متن کامل